ECE 604 Electromagnetic Field Theory

Instructor: Professor W.C. Chew, x4-5402, Wang 3053, (<u>wcchew</u>), (m) 217-390-9653

Office Hours: Tue: 7:00-8:00 pm, Wed: 7:00-8:00 pm, Thu: 7:00-8:00 pm (Zoom to accommodate online students) (tentative)

TA: Ivan Okhmatovskii (iokhmato), (Unofficial) TA: Boyuan Zhang (zhang3241)

Assist. Instructor: Dr. Dongyeop Na (na32) Secretary: Lori Carte, Wang 2080 (lcarte)

Recommended Textbook: Fields and Waves in Communication Electronics, S. Ramo, J.R. Whinnery, and T. Van Duzer, 3rd Ed. (The course will be taught from lecture notes at https://engineering.purdue.edu/wcchew/)

Supplementary Texts: Electromagnetic Wave Theory, J.A. Kong. ECE 350X notes. Theory of Optical and Microwave Guides notes. Waves and Fields in Inhomogeneous Media, Chap. 1. Classical Electrodynamics, J.D. Jackson. Electromagnetic Noise and Quantum Optical Measurements, H.A. Haus.

Spring 2022, Mon Wed Fri online

Course Outline (Revised Jan 10, 2022)

ECE604-I, EMFT-I Fundamentals, Complex Media, Theorems and Principles

	Mon	Wed	Fri
Week 1 Jan 10- Jan14	1. Introduction, Maxwell's equations.	2. Maxwell's equations, differential operator form.	3. Constitutive relations, wave equation, electrostatics, and static Green's function.
Week 2 Jan 17- Jan21	4. Magnetostatics, boundary conditions, and jump conditions.	5. Biot-Savart law, conductive media interface, instantaneous Poynting's theorem.	6. Time-harmonic fields, complex power. (delivered by Dr. NA)
Week 3 Jan 24- Jan28	7. More on constitutive relations, uniform plane wave.	8. Lossy media, Lorentz force law, Drude-Lorentz-Sommerfeld model.	9. Waves in gyrotropic media, polarization.
Week 4 Jan 31- Feb 4	10. Spin angular momentum, complex Poynting's theorem, lossless condition, energy density.	11. Uniqueness theorem.	12. Reciprocity theorem.
Week 5 Feb 7- Feb 11	13. Equivalence theorem, Huygens' principle.	Review	EXAM

ECE604-II. EMFT-II Transmission Lines. Waves in Lavered Media, Waveguides, and Cavity Resonators

	Mon	Wed	Fri
Week 1	14. Circuit theory revisited.	15. Transmission lines.	16. More on transmission lines.
Feb 14- Feb 18	-		
Week 2	17. Multi-junction transmission	18. Reflection, transmission, and	19. More on interesting physical
Feb 21- Feb 25	lines, duality principle.	interesting physical phenomena.	phenomena, homomorphism with
			transmission lines
Week 3	20. Waves in layered media.	21. Dielectric slab waveguides.	22. Hollow waveguides.
Feb 28- Mar 4			
Week 4	23. More on hollow waveguides.	24. More on waveguides and	25. Cavity resonators.
Mar 7- Mar 11		transmission lines.	
Week 5	26. Quality factor of cavities, mode	Review	EXAM
Mar 14- Mar 18	orthogonality.		

ECE604-III, EMFT-III Radiation, High-Frequency Approximation, Computational Electromagnetics, Quantum Theory of Light

	Mon	Wed	Fri
Week 1	27. Scalar and vector potentials.	28. Radiation by a Hertzian dipole.	29. Radiation fields.
Mar 21- Mar 25			
Week 2	30. Array antennas, Fresnel zone,	31. Different types of antennas-	32. Shielding, image theory.
Mar 28- Apr 1	Rayleigh distance.	heuristics.	
Week 3	33. High frequency solutions,	34. Scattering of electromagnetic	35. Spectral expansions of source
Apr 4 - Apr 8	gaussian beams.	field.	fields-Sommerfeld integrals.
Week 4	36. Computational	37. Finite difference method, Yee	38. Quantum theory of light.
Apr 11 - Apr 15	electromagnetics, numerical	algorithm.	
	methods.		
Week 5	39. Quantum coherent state of	Review	EXAM
Apr 18 - Apr 22	light.		

HW=300 pts, EXAMS 1, 2, 3=400 pts, Class/OH/RQ Participation=70, TOTAL=770 pts